Recursion Operators for NxN Matrix Nonlinear Evolution Equations
نویسندگان
چکیده
منابع مشابه
Symbolic Computation of Recursion Operators for Nonlinear Differential-Difference equations
An algorithm for the symbolic computation of recursion operators for systems of nonlinear differential-difference equations (DDEs) is presented. Recursion operators allow one to generate an infinite sequence of generalized symmetries. The existence of a recursion operator therefore guarantees the complete integrability of the DDE. The algorithm is based in part on the concept of dilation invari...
متن کاملOn recursion operators and nonlocal symmetries of evolution equations
We consider the recursion operators with nonlocal terms of special form for evolution systems in (1+1) dimensions, and extend them to well-defined operators on the space of nonlocal symmetries associated with the so-called universal Abelian coverings over these systems. The extended recursion operators are shown to leave this space invariant. These results apply, in particular, to the recursion...
متن کاملSymmetries and (Related) Recursion Operators of Linear Evolution Equations
Significant cases of time-evolution equations, the linear Schrödinger and the Fokker–Planck equation are considered. It is known that equations of this type can be transformed, in some cases, into a highly simplified form. The properties of these equations in their initial and their simplified form are compared, showing in particular that this transformation partially prevents a clear understan...
متن کاملOn Huygens’ Principle for Dirac Operators and Nonlinear Evolution Equations
We exhibit a class of Dirac operators that possess Huygens’ property, i.e., the support of their fundamental solutions is precisely the light cone. This class is obtained by considering the rational solutions of the modified Korteweg-de Vries hierarchy.
متن کاملSymbolic Computation of Conservation Laws, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations
Algorithms for the symbolic computation of polynomial conservation laws, generalized symmetries, and recursion operators for systems of nonlinear differential-difference equations (DDEs) are presented. The algorithms can be used to test the complete integrability of nonlinear DDEs. The ubiquitous Toda lattice illustrates the steps of the algorithms, which have been implemented in Mathematica. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1985
ISSN: 0033-068X,1347-4081
DOI: 10.1143/ptp.74.1005